Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum.
نویسندگان
چکیده
The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-A resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important "flap" (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.
منابع مشابه
Structural insights into the activation and inhibition of histo-aspartic protease from Plasmodium falciparum.
Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-1...
متن کاملFood vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum.
Intraerythrocytic Plasmodium falciparum digests vast amounts of hemoglobin within an acidic food vacuole (FV). Four homologous aspartic proteases participate in hemoglobin degradation within the FV. Plasmepsin (PM) I and II are thought to initiate degradation of the native hemoglobin molecule. PM IV and histo-aspartic protease (HAP) act on denatured globin further downstream in the pathway. PM ...
متن کاملFour plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine.
Hemoglobin degradation is a metabolic process that is central to the growth and maturation of the malaria parasite Plasmodium falciparum. Two aspartic proteases that initiate degradation, plasmepsins (PMs) I and II, have been identified and extensively characterized. Eight additional PM genes are present in the P. falciparum genome. To better understand the enzymology of hemoglobin degradation,...
متن کاملInteractions of Ganoderiol-f with Aspartic Proteases of Hiv and Plasmepsin for Anti-hiv and Anti-malaria Discovery
Objective: HIV-1 has been a killer disease since two decades ago, while a potential cure has not yet discovered due to the fast mutations of the HIV1 enzymes,i.e reverse transcriptase, integrase, and protease. Apart of HIV-1, malaria has been the biggest cause of death in human and it is mostly found in the East part of Indonesia. There are some enzymes in the food vacuole of Plasmodium falcipa...
متن کاملDFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 388 3 شماره
صفحات -
تاریخ انتشار 2009